93 research outputs found

    Quantized Compressive K-Means

    Full text link
    The recent framework of compressive statistical learning aims at designing tractable learning algorithms that use only a heavily compressed representation-or sketch-of massive datasets. Compressive K-Means (CKM) is such a method: it estimates the centroids of data clusters from pooled, non-linear, random signatures of the learning examples. While this approach significantly reduces computational time on very large datasets, its digital implementation wastes acquisition resources because the learning examples are compressed only after the sensing stage. The present work generalizes the sketching procedure initially defined in Compressive K-Means to a large class of periodic nonlinearities including hardware-friendly implementations that compressively acquire entire datasets. This idea is exemplified in a Quantized Compressive K-Means procedure, a variant of CKM that leverages 1-bit universal quantization (i.e. retaining the least significant bit of a standard uniform quantizer) as the periodic sketch nonlinearity. Trading for this resource-efficient signature (standard in most acquisition schemes) has almost no impact on the clustering performances, as illustrated by numerical experiments

    Breaking the waves: asymmetric random periodic features for low-bitrate kernel machines

    Full text link
    Many signal processing and machine learning applications are built from evaluating a kernel on pairs of signals, e.g. to assess the similarity of an incoming query to a database of known signals. This nonlinear evaluation can be simplified to a linear inner product of the random Fourier features of those signals: random projections followed by a periodic map, the complex exponential. It is known that a simple quantization of those features (corresponding to replacing the complex exponential by a different periodic map that takes binary values, which is appealing for their transmission and storage), distorts the approximated kernel, which may be undesirable in practice. Our take-home message is that when the features of only one of the two signals are quantized, the original kernel is recovered without distortion; its practical interest appears in several cases where the kernel evaluations are asymmetric by nature, such as a client-server scheme. Concretely, we introduce the general framework of asymmetric random periodic features, where the two signals of interest are observed through random periodic features: random projections followed by a general periodic map, which is allowed to be different for both signals. We derive the influence of those periodic maps on the approximated kernel, and prove uniform probabilistic error bounds holding for all signal pairs from an infinite low-complexity set. Interestingly, our results allow the periodic maps to be discontinuous, thanks to a new mathematical tool, i.e. the mean Lipschitz smoothness. We then apply this generic framework to semi-quantized kernel machines (where only one signal has quantized features and the other has classical random Fourier features), for which we show theoretically that the approximated kernel remains unchanged (with the associated error bound), and confirm the power of the approach with numerical simulations

    Asymmetric compressive learning guarantees with applications to quantized sketches

    Full text link
    The compressive learning framework reduces the computational cost of training on large-scale datasets. In a sketching phase, the data is first compressed to a lightweight sketch vector, obtained by mapping the data samples through a well-chosen feature map, and averaging those contributions. In a learning phase, the desired model parameters are then extracted from this sketch by solving an optimization problem, which also involves a feature map. When the feature map is identical during the sketching and learning phases, formal statistical guarantees (excess risk bounds) have been proven. However, the desirable properties of the feature map are different during sketching and learning (e.g. quantized outputs, and differentiability, respectively). We thus study the relaxation where this map is allowed to be different for each phase. First, we prove that the existing guarantees carry over to this asymmetric scheme, up to a controlled error term, provided some Limited Projected Distortion (LPD) property holds. We then instantiate this framework to the setting of quantized sketches, by proving that the LPD indeed holds for binary sketch contributions. Finally, we further validate the approach with numerical simulations, including a large-scale application in audio event classification

    M2^2M: A general method to perform various data analysis tasks from a differentially private sketch

    Full text link
    Differential privacy is the standard privacy definition for performing analyses over sensitive data. Yet, its privacy budget bounds the number of tasks an analyst can perform with reasonable accuracy, which makes it challenging to deploy in practice. This can be alleviated by private sketching, where the dataset is compressed into a single noisy sketch vector which can be shared with the analysts and used to perform arbitrarily many analyses. However, the algorithms to perform specific tasks from sketches must be developed on a case-by-case basis, which is a major impediment to their use. In this paper, we introduce the generic moment-to-moment (M2^2M) method to perform a wide range of data exploration tasks from a single private sketch. Among other things, this method can be used to estimate empirical moments of attributes, the covariance matrix, counting queries (including histograms), and regression models. Our method treats the sketching mechanism as a black-box operation, and can thus be applied to a wide variety of sketches from the literature, widening their ranges of applications without further engineering or privacy loss, and removing some of the technical barriers to the wider adoption of sketches for data exploration under differential privacy. We validate our method with data exploration tasks on artificial and real-world data, and show that it can be used to reliably estimate statistics and train classification models from private sketches.Comment: Published at the 18th International Workshop on Security and Trust Management (STM 2022

    Diagnostic Performances of Anti-Cyclic Citrullinated Peptides Antibody and Antifilaggrin Antibody in Korean Patients with Rheumatoid Arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a systemic autoimmune disease of unknown etiology. We studied the diagnostic performances of anti-cyclic citrullinated peptides antibody (anti-CCP) assay and recombinant anti-citrullinated filaggrin antibody (AFA) assay by enzyme linked immunosorbent assay (ELISA) in patients with RA in Korea. Diagnostic performances of the anti-CCP assay and AFA assay were compared with that of rheumatoid factor (RF) latex fixation test. RF, anti-CCP, and AFA assays were performed in 324 RA patients, 251 control patients, and 286 healthy subjects. The optimal cut off values of each assay were determined at the maximal point of area under the curve by receiver-operator characteristics (ROC) curve. Sensitivity (72.8%) and specificity (92.0%) of anti-CCP were better than those of AFA (70.3%, 70.5%), respectively. The diagnostic performance of RF showed a sensitivity of 80.6% and a specificity of 78.5%. Anti-CCP and AFA showed positivity in 23.8% and 17.3% of seronegative RA patients, respectively. In conclusion, we consider that anti-CCP could be very useful serological assay for the diagnosis of RA, because anti-CCP revealed higher diagnostic specificity than RF and AFA at the optimal cut off values and could be performed by easy, convenient ELISA method

    Compressive Learning with Privacy Guarantees

    Get PDF
    International audienceThis work addresses the problem of learning from large collections of data with privacy guarantees. The compressive learning framework proposes to deal with the large scale of datasets by compressing them into a single vector of generalized random moments, from which the learning task is then performed. We show that a simple perturbation of this mechanism with additive noise is sufficient to satisfy differential privacy, a well established formalism for defining and quantifying the privacy of a random mechanism. We combine this with a feature subsampling mechanism, which reduces the computational cost without damaging privacy. The framework is applied to the tasks of Gaussian modeling, k-means clustering and principal component analysis (PCA), for which sharp privacy bounds are derived. Empirically, the quality (for subsequent learning) of the compressed representation produced by our mechanism is strongly related with the induced noise level, for which we give analytical expressions
    • 

    corecore